Category \mathcal{O} : Methods

Cailan Li

July 31st, 2020

1 Extensions in Category \mathcal{O}

Proposition 1

Let $\lambda, \mu \in \mathfrak{h}^{*}$. Then
(a) Let M be a highest weight module of weight μ with $\lambda \geq \mu$ or λ is not comparable to μ. Then $\operatorname{Ext}_{\mathcal{O}}^{1}(M(\lambda), M)=0$. In particular

$$
\operatorname{Ext}_{\mathcal{O}}^{1}(M(\lambda), L(\lambda))=\operatorname{Ext}_{\mathcal{O}}^{1}(M(\lambda), M(\lambda))=0, \quad \operatorname{Ext}_{\mathcal{O}}^{1}(M(\lambda), L(\mu))=0
$$

(b) If $\lambda>\mu$ and $N(\lambda)$ is the maximal submodule of $M(\lambda)$, then

$$
\operatorname{Hom}_{\mathcal{O}}(N(\lambda), L(\mu)) \cong \operatorname{Ext}_{\mathcal{O}}^{1}(L(\lambda), L(\mu))
$$

(c) $\operatorname{Ext}_{\mathcal{O}}^{1}(L(\lambda), L(\lambda))=0$

Proof. (a) Recall there is a bijection of sets $\operatorname{Ext}_{\mathcal{O}}^{1}(M(\lambda), M)$ with equivalence classes of SES

$$
0 \rightarrow M \rightarrow E \xrightarrow{\pi} M(\lambda) \rightarrow 0
$$

where $\underline{E \in \mathcal{O}}$. It therefore suffices to show any such sequence splits. Let $v_{\lambda} \in M(\lambda)_{\lambda}$ be the h.w. vector. Let $\widetilde{v_{\lambda}}$ be any lift of v_{λ} under π; we claim $\widetilde{v_{\lambda}}$ is a h.w. vector of weight λ in E. Notice this will give us the required splitting as the universal property of $M(\lambda)$ will give us a map $\varphi: M(\lambda) \rightarrow E$ sending $v_{\lambda} \mapsto \widetilde{v_{\lambda}}$ and you can check that this map has to be injective (Use PBW basis in $M(\lambda)$). Because $\underline{E \in \mathcal{O}}$, it is \mathfrak{h}-semisimple, and thus we can write $\widetilde{v_{\lambda}}$ as a sum of weight vectors $\widetilde{v_{\lambda}}=\sum_{i=1}^{n} a_{i} v_{i}$ where $v_{i} \in E_{\gamma_{i}}$. Since π is a \mathfrak{g} module morphism we have that $\pi\left(E_{\gamma}\right) \subseteq M(\lambda)_{\gamma}$ for $\gamma \in \mathfrak{h}^{*}$ and thus

$$
M(\lambda)_{\lambda} \ni v_{\lambda}=\pi\left(\widetilde{v_{\lambda}}\right)=\sum_{i=1}^{n} a_{i} \pi\left(v_{i}\right) \in M(\lambda)_{\gamma_{1}} \oplus \ldots \oplus M(\lambda)_{\gamma_{n}}
$$

But the weight space decomposition of $M(\lambda)$ is a direct sum decomposition and thus $\gamma_{i}=\lambda$ for all i. Thus we see that $\widetilde{v_{\lambda}} \in E_{\lambda}$.

Because $\pi\left(e_{i} \cdot \widetilde{v_{\lambda}}\right)=e_{i} \cdot \pi\left(\widetilde{v_{\lambda}}\right)=e_{i} \cdot v_{\lambda}=0$ we have that $e_{i} \cdot \widetilde{v_{\lambda}} \in M$. However this means that $\lambda+\alpha_{i}$ is a weight of M, and since M is h.w. of weight μ, this means that

$$
\lambda+\alpha_{i}=\mu-\sum k_{j} \alpha_{j} \Longrightarrow \mu-\lambda=\sum k_{j}^{*} \alpha_{j}, \quad k_{j}^{*} \in \mathbb{Z}^{\geq 0}
$$

where $k_{i}^{*} \in \mathbb{Z}^{\geq 1}$, aka $\lambda<\mu$ which is contrary to assumption. It follows that we have $e_{i} \cdot \widetilde{v_{\lambda}}=0$ and thus $\widetilde{v_{\lambda}}$ is a h.w. vector of weight λ as desired.
(b) From the SES

$$
0 \rightarrow N(\lambda) \rightarrow M(\lambda) \rightarrow L(\lambda) \rightarrow 0
$$

we get the LES in cohomology

$$
\ldots \rightarrow \operatorname{Hom}_{\mathcal{O}}(M(\lambda), L(\mu)) \rightarrow \operatorname{Hom}_{\mathcal{O}}(N(\lambda), L(\mu)) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{1}(L(\lambda), L(\mu)) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{1}(M(\lambda), L(\mu)) \rightarrow \ldots
$$

$\operatorname{Hom}_{\mathcal{O}}(M(\lambda), L(\mu))=0$ because $\lambda>\mu$ so there's nowhere for the h.w. vector in $M(\lambda)$ to go but zero as the image of a h.w. vector of weight λ under a \mathfrak{g}-module morphism is a h.w. vector of weight λ. Since $\lambda>\mu, \operatorname{Ext}_{\mathcal{O}}^{1}(M(\lambda), L(\mu))=0$ by part (a) so this completes the proof.
(c) Replace μ with λ above. The last term is still zero by part (a) so it suffices to show $\operatorname{Hom}_{\mathcal{O}}(N(\lambda), L(\lambda))=$ 0 . Because $L(\lambda)$ is simple, any nonzero map $\phi: N(\lambda) \rightarrow L(\lambda)$ is surjective. But as $N(\lambda) \in \mathcal{O}$, the same argument in (a) shows that any lift of v_{λ}, say $\widetilde{v_{\lambda}} \in N(\lambda)_{\lambda}$. But by the construction of $N(\lambda), N(\lambda)_{\lambda}=0$ and thus ϕ can't be surjective and thus has to be the zero map.

Warning. Category \mathcal{O} is not closed under extensions. In fact it's not even closed under extensions of Verma modules. Consider $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$ and $\lambda \in \mathfrak{h}^{*}$. Let N be the 2-dimensional $U(\mathfrak{b})$ module where

$$
e \cdot v=0 \forall v \in N, \quad h \leftrightarrow\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)
$$

Let $M:=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} N$. Then we then have an exact sequence

$$
0 \rightarrow M(\lambda) \rightarrow M \xrightarrow{\pi} M(\lambda) \rightarrow 0
$$

that is not split! This amounts to checking that any element in $\pi^{-1}\left(v_{\lambda}\right)$ is not a h.w. vector of weight λ. Thus $M \notin \mathcal{O}$ as otherwise this sequence would split.

2 Duality in Category \mathcal{O}

The natural choice for a duality functor is to send each module $M \mapsto M^{*}$ where the action of $U(\mathfrak{g})$ on M^{*} is given by

$$
(x \cdot f)(m):=-f(x \cdot m)
$$

coming from the antipode in the hopf algebra $U(\mathfrak{g})$. However recall that for M is an infinite-dimensional module, then M^{*} is an even larger infinite-dimensional module and thus has no chance to be in \mathcal{O}. However recall that weight spaces of M are f.d. Thus our first try for a duality functor will be

Definition 2.1 (Try 1).

$$
M^{* V}:=\bigoplus_{\lambda}\left(M_{\lambda}\right)^{*}
$$

where the action of $U(\mathfrak{g})$ on $\left(M_{\lambda}\right)^{*}$ is given above.
Now will $M^{* \vee} \in \mathcal{O}$? A quick computation shows that the answer is NO.
Example 1. Let $\mathfrak{g}=\mathfrak{s l}_{2}$ and consider $M=M(2)$. Let $v_{k}=f^{k} v_{0} / k!\in M_{2-2 k}$ where v_{0} is the h.w. vector.
[Draw usual picture of actions here]
Let $\varphi_{k}=v_{k}^{*}$ be the dual basis vector to v_{k}. Now compute that

$$
\left(e \cdot \varphi_{3}\right)(v)=-\varphi_{3}(e \cdot v)
$$

Since φ_{3} is only nonzero on the weight space M_{-4}, it follows we must have $v \in M_{-6}$ in order for the number above to be nonzero. In particular we see that

$$
\left(e \cdot \varphi_{3}\right)\left(v_{4}\right)=-\varphi_{3}\left(e \cdot v_{4}\right)=-\varphi_{3}\left((-1) v_{3}\right)=1 \Longrightarrow e \cdot \varphi_{3}=\varphi_{4}
$$

Iterating this process shows that $e^{k} \varphi_{2}=k!\varphi_{2+k}$ and in particular is never 0 and thus not locally $U(\mathfrak{n})$ finite.

However the example above tells us what we should do to achieve locally $U(\mathfrak{n})$ finiteness; we should interchange the actions of e and f. Now because $(g \cdot h \cdot f)(v)=f(h \cdot g \cdot v)$, in order to obtain a new left \mathfrak{g}-module structure on V^{*} we need to precompose with a lie algebra anti-automorphism ${ }^{1}$ of \mathfrak{g} instead of a lie algebra automorphism. As such we define

Definition 2.2. Consider the lie algebra anti-automorphism τ of \mathfrak{g} given by sending $e_{\alpha} \mapsto f_{\alpha}, f_{\alpha} \mapsto e_{\alpha}$ and fixing $h_{\alpha}{ }^{2}$. Then define the twisted action of \mathfrak{g} on M^{*} by

$$
\left(x \cdot{ }_{\tau} f\right)(m):=f(\tau(x) \cdot m)
$$

From now on we will just write $x \cdot f=x \cdot{ }_{\tau} f$.
Definition 2.3. Let M be a $U(\mathfrak{g})$ module which is \mathfrak{h} semisimple with f.d. weight spaces. Then the ($B G G$) dual of M is defined as a set by

$$
M^{\vee}=\bigoplus_{\lambda \in \mathfrak{h}^{*}}\left(M_{\lambda}\right)^{*}
$$

where the \mathfrak{g} module structure on $\left(M_{\lambda}\right)^{*}$ is given by the twisted τ action above.
Lemma 2.4. Let M satisfy the conditions above. Then
(1) $\left(M^{\vee}\right)_{\lambda}=\left(M_{\lambda}\right)^{*}$
(2) $\operatorname{ch}\left(M^{\vee}\right)=\operatorname{ch}(M)$
(3) $L(\lambda)^{\vee}=L(\lambda)$

Proof. (1) Because $M=\bigoplus_{\mu \in \mathfrak{h}^{*}} M_{\mu}$, we always have an exact sequence of \mathbb{C} vector spaces

$$
0 \rightarrow \bigoplus_{\lambda \neq \mu \in \mathfrak{h}^{*}} M_{\mu} \rightarrow M \rightarrow M_{\lambda} \rightarrow 0
$$

So dualizing as vector spaces gives

$$
0 \rightarrow\left(M_{\lambda}\right)^{*} \rightarrow M^{*} \rightarrow\left(\bigoplus_{\lambda \neq \mu \in \mathfrak{h}^{*}} M_{\mu}\right)^{*} \rightarrow 0
$$

This means that we can identify

$$
\left(M_{\lambda}\right)^{*}=\left\{f \in M^{*}|f|_{M_{\mu}}=0 \forall \mu \neq \lambda\right\}
$$

[^0]Now given $f \in\left(M_{\lambda}\right)^{*}$ since it vanishes outside of M_{λ}, it's completely determined by what it does on M_{λ}. But for $v \in M_{\lambda}$ we have

$$
(h \cdot f)(v):=f(\tau(h) \cdot v)=f(h \cdot v)=f(\lambda(h) v)=\lambda(h) f(v) \quad \forall h \in \mathfrak{h}
$$

In other words $\left(M_{\lambda}\right)^{*} \subseteq\left(M^{\vee}\right)_{\lambda}$. Conversely, if $f \in\left(M^{\vee}\right)_{\lambda}$ and $\left.f\right|_{M_{\mu}} \neq 0$ the same calculation above shows that on $M_{\mu}, h \cdot f=\mu(h) f$ contrary to assumption and thus we have $\left(M^{\vee}\right)_{\lambda} \subseteq\left(M_{\lambda}\right)^{*}$.
(2) is a direct consequence of (1) as $\operatorname{dim} V=\operatorname{dim} V^{*}$ for V f.d.
(3) is a direct consequence of (2) as f.d. modules of \mathfrak{g} are completely determined by their characters. Edit: only works for λ integral dominant. Instead use that ${ }^{\vee}$ is an exact contravariant functor (see below) so that if M is not simple, then M^{\vee} is not simple, as

$$
0 \rightarrow A \rightarrow M \rightarrow M / A \rightarrow 0 \Longrightarrow 0 \rightarrow(M / A)^{\vee} \rightarrow M^{\vee} \rightarrow A^{\vee} \rightarrow 0
$$

It follows that since $\left(L(\lambda)^{\vee}\right)^{\vee}=L(\lambda)$ is simple, so is $L(\lambda)^{\vee}$. One then checks that v_{λ}^{*} is a h.w. vector in $L(\lambda)^{\vee}$ of weight λ where v_{λ} is a h.w. vector in $L(\lambda)$ and since there is a unique simple module of h.w. λ we have $L(\lambda)^{\vee} \cong L(\lambda)$.

Theorem 2

The $B G G$ dual ${ }^{\vee}$ satisfies
(a) \vee is an exact (contravariant) functor on the category of \mathfrak{g} modules which are \mathfrak{h} semisimple with f.d. weight spaces.
(b) ${ }^{\vee}$ descends to a functor ${ }^{\vee}: \mathcal{O} \rightarrow \mathcal{O}$ such that $M \mapsto M^{\vee \vee}$ is isomorphic to the identity functor.
(c) For any $M \in \mathcal{O}$ and any central character $\chi,\left(M^{\vee}\right)^{\chi} \cong\left(M^{\chi}\right)^{\vee}$. In particular ${ }^{\vee}$ descends to a functor ${ }^{\vee}: \mathcal{O}_{\chi} \rightarrow \mathcal{O}_{\chi}$.
(d) Let $M, N \in \mathcal{O}$. Then $(M \oplus N)^{\vee}=M^{\vee} \oplus N^{\vee}$. Thus M indecomposable $\Longrightarrow M^{\vee}$ indecomposable.
(e) $\operatorname{Ext}_{\mathcal{O}}^{1}(M, N)=\operatorname{Ext}_{\mathcal{O}}^{1}\left(N^{\vee}, M^{\vee}\right)$.

Proof. (a) As soon as you check \vee is a functor you are done because in the category of vector spaces $M_{\lambda} \mapsto M_{\lambda}^{*}$ is exact.
(b) Let $\phi \in M_{\lambda}^{\vee}$. Note that $e_{\alpha} \cdot \phi \in M_{\lambda+\alpha}^{*}$. This is because for any \mathfrak{g} module N, we have $e_{\alpha} \cdot N_{\lambda} \subseteq N_{\lambda+\alpha}$. Apply this to $N=M^{\vee}$ and by Lemma 2.4 we have that $\left(M^{\vee}\right)_{\lambda+\alpha}=M_{\lambda+\alpha}^{*}$.

Now suppose $M \in \mathcal{O}$. M^{\vee} will then have a weight decomposition given by dualizing each M_{λ} by Lemma 2.4 and so is \mathfrak{h} semisimple. Because the set of weights of M is contained the union of the cones $\cup_{i}^{n} \mu_{i}-\Gamma_{i}$ [Draw picture], it follows that $M_{\mu+\sum k_{i} \alpha_{i}}=0$ for $k_{i} \gg 0 \Longrightarrow M_{\mu+\sum k_{i} \alpha_{i}}^{\vee}=0$ for $k_{i} \gg 0$. By above we showed that each e_{α} takes us to a higher weight space and thus $U(\mathfrak{n}) \cdot v=0$ for any v. Finally to show that M^{\vee} is f.g as a $U(\mathfrak{g})$ module it suffices to show it has finite length as recall that given

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

A, C f.g. $\Longrightarrow B$ f.g. and the "base case" $L(\mu)$ is clearly f.g. as a $U(\mathfrak{g})$ module. Consider the last step of a composition series for M

$$
0 \rightarrow N \rightarrow M \rightarrow L(\mu) \rightarrow 0
$$

Applying the functor ${ }^{\vee}$ yields

$$
0 \rightarrow L(\mu)^{\vee} \rightarrow M^{\vee} \rightarrow N^{\vee} \rightarrow 0
$$

But by Lemma $2.4 L(\mu)^{\vee}=L(\mu)$ and more importantly simple so this gives us the start of a composition series for M^{\vee}. Now repeat the same procedure but with N. Because \mathcal{O} has finite length, we see this procedure eventually stops and we will have produced a finite composition series for M^{\vee} as desired. (In fact given a fixed composition series for M, this process gives us a composition series for M^{\vee} whose factors are the same as our fixed composition series for M, but the order of the factors are reversed!). $(c)-(e)$ Left to the reader.

2.1 Duals of H.W. modules

Example 2 (Dual Verma modules in $\mathfrak{s l}_{2}$). Consider our previous example with $M(2)$. Recall that our twisted action was specifically designed so that e still raises weights by 2 instead of lowering by 2 . Thus in terms of arrows, our picture of $M(2)^{\vee}$ is exactly the same as $M(2)$.

$$
[\text { Draw } M(2) \text { here }] \quad\left[\text { Draw } M(2)^{\vee} \text { here }\right]
$$

However the scalars by which e, f move v_{i} change. Essentially to get e to move say v_{-3}^{*} up, we need to use the actual action of f on v_{-2} and therefore the scalar by which we move up by is exactly 3 and in general we have [picture]. Using this perspective one can see why $L(2)$ is self dual; when we cut off $M(2)$ by the maximal submodule, the scalars by which we move up by in $L(2)^{\vee}$ is exactly the same as in $L(2)$ but in reverse order. This symmetry allows us to define an isomorphism (it essentially says we only need to check relations for one of F or $E) L(2)^{\vee} \xrightarrow{\sim} L(2)$ given by $v_{2}^{*} \mapsto 2 v_{2}, v_{1}^{*} \mapsto v_{1}, v_{0}^{*} \mapsto 2 v_{0}^{3}$.

Theorem 3

Let $\lambda, \mu \in \mathfrak{h}^{*}$. Then
(a) The dual Verma module $\nabla(\lambda):=M(\lambda)^{\vee}$ has $L(\lambda)$ as its unique simple submodule and its other composition factors $L(\mu)$ satisfy $\mu<\lambda$.
(b) If M is a h.w. module of weight λ, then M^{\vee} is also a highest weight module of weight λ.
(c) Any nonzero homomorphism $M(\lambda) \rightarrow M(\lambda)^{\vee}$ has the simple submodule $L(\lambda)$ as its image. Moreover we have

$$
\operatorname{dim} \operatorname{Hom}_{\mathcal{O}}\left(M(\lambda), M(\lambda)^{\vee}\right)=1, \quad \operatorname{dim} \operatorname{Hom}_{\mathcal{O}}\left(M(\mu), M(\lambda)^{\vee}\right)=0 \text { for } \mu \neq \lambda
$$

(d) $\operatorname{Ext}_{\mathcal{O}}^{1}\left(M(\lambda), M(\mu)^{\vee}\right)=0$ for all λ, μ.

Proof. (a) is just the dual of the fact that a h.w. module has a unique maximal submodule and thus unique maximal quotient. The second statement follows from the fact that the composition factors of M^{\vee} is the same as of M as proved in previous theorem.

[^1](b) Left to the reader. (c) The image I, of a nonzero morphism $M(\mu) \rightarrow M(\lambda)^{\vee}$ is a nonzero submodule of $M(\lambda)^{\vee}$ of h.w. μ. I therefore contains a simple submodule but by (a) it follows that $L(\lambda) \hookrightarrow I$ and thus $\lambda \leq \mu$. On the other hand, as I is a h.w. module of weight μ it has $L(\mu)$ as a quotient and since $I \hookrightarrow M(\lambda)^{\vee}$ this shows that $L(\mu)$ appears as a composition factor of $M(\lambda)^{\mu}$ and so again by (a) we have that $\mu \leq \lambda \Longrightarrow \mu=\lambda$. In this case, we see that
\[

$$
\begin{equation*}
M(\lambda) \rightarrow L(\lambda) \hookrightarrow M(\lambda)^{\vee} \tag{1}
\end{equation*}
$$

\]

gives us a nonzero morphism, and since $\operatorname{dim} M(\lambda)_{\lambda}^{V}=\operatorname{dim} M(\lambda)_{\lambda}=1$, it follows that up to scalar this is the only nonzero morphism.
(d) If $\lambda \geq \mu$ or incomparable, then since $M(\mu)^{\vee}$ is a h.w. module of weight μ by (b), by Proposition 1 we have that $\operatorname{Ext}_{\mathcal{O}}^{1}\left(M(\lambda), M(\mu)^{\vee}\right)=0$. Otherwise we must have $\mu \geq \lambda$ but in this case for any SES

$$
0 \rightarrow M(\mu)^{\vee} \rightarrow M \rightarrow M(\lambda) \rightarrow 0
$$

corresponding to an element in $\operatorname{Ext}_{\mathcal{O}}^{1}\left(M(\lambda), M(\mu)^{\vee}\right)$, we can dualize to obtain

$$
0 \rightarrow M(\lambda)^{\vee} \rightarrow M^{\vee} \rightarrow M(\mu) \rightarrow 0
$$

which corresponds to an element of $\operatorname{Ext}_{\mathcal{O}}^{1}\left(M(\mu), M(\lambda)^{\vee}\right)=0$ as $\mu \geq \lambda$. Dualize again and use that BGG dual commutes with direct sums.

Remark. Eq. (1) exhibits $L(\lambda)$ as an "intermediate extension" in geometry. Moreover parts (b) and (c) can be thought of geometrically as the statement that $j_{\lambda}^{*}\left(j_{\mu}\right)!=0$ for $\lambda \neq \mu$.

3 Standard Filtrations

Definition 3.1. An object $M \in \mathcal{O}$ has a standard filtration if there is a sequence of submodules

$$
0 \subset M_{1} \subset \ldots \subset M_{n}=M
$$

s.t. M_{i} / M_{i-1} is isomorphic to a Verma module. Denote by $(M: M(\lambda))$ the number of times $M(\lambda)$ appears

Remark. Note that because \mathcal{O} is of finite length, any standard filtration must be finite or otherwise you can construct a composition series of infinite length.

Proposition 3.2. Suppose $M \in \mathcal{O}$ has a standard filtration. Then
(a) Suppose λ is a maximal weight ${ }^{4}$ then M has a submodule isomorphic to $M(\lambda)$ and $M / M(\lambda)$ has a standard filtration.
(b) If $M=M_{1} \oplus M_{2}$ then M_{1}, M_{2} also have standard filtrations.
(c) M is free as a $U\left(\mathfrak{n}^{-}\right)$module. (Analogue of PBW basis in $M(\lambda)$)

[^2]Proof. (a) Let m_{λ} be any vector in M_{λ}. Because $e_{\alpha} \cdot m_{\lambda} \in M_{\lambda+\alpha}=0$ since λ is a maximal weight of M, it follows that m_{λ} is a h.w. vector of weight λ. By the universal property of $M(\lambda)$, we have a map $\varphi: M(\lambda) \rightarrow M$. We claim it's injective. Because M has a standard filtration, let i be the smallest index for which $\varphi(M(\lambda)) \subset M_{i}$. Thus we see that the reduction map

$$
\bar{\varphi}: M(\lambda) \xrightarrow{\varphi} M_{i} \xrightarrow{\pi} M_{i} / M_{i-1}
$$

is nonzero. But by definition $M_{i} / M_{i-1} \cong M(\mu)$ for some μ. Thus $\lambda \leq \mu$ or otherwise there's nowhere for the h.w. vector of $M(\lambda)$ to go. But because λ is a maximal weight of M and thus of M_{i}, we must actually have $\lambda=\mu$. [Draw picture] Since any nonzero endomorphism of $M(\lambda)$ must send the h.w. vector to the h.w. vector $\bar{\varphi}$ must be an isomorphism and thus φ is injective.

Notice that $M_{i-1} \cap M(\lambda)=0$ as given $x \in M_{i-1} \cap M(\lambda)$, we see that $\pi \circ \varphi(x)=0 \Longrightarrow x=0$ as $\bar{\varphi}$ is an isomorphism. As a result $M_{i-1} \rightarrow M / M(\lambda)$ is injective (as the kernel is $M_{i-1} \cap M(\lambda)$) and by the Third isomorphism Theorem we have the exact sequence

$$
0 \rightarrow M_{i-1} \rightarrow M / M(\lambda) \rightarrow M / M_{i} \rightarrow 0
$$

The side factors have standard filtrations and thus they combine to give a standard filtration for $M / M(\lambda)$.
(b) Sketch: Use induction on standard filtration length and wlog one can find $M(\lambda)$ inside M by part (a) s.t.

$$
M / M(\lambda)=M_{1} / M(\lambda) \oplus M_{2}
$$

Part (a) tells us that $M / M(\lambda)$ has a standard filtration and so by induction we conclude that M_{2} has a standard filtration and $M_{1} / M(\lambda)$ has a standard filtration $\left(\Longrightarrow M_{1}\right.$ has a standard filtration).
(c). Proceed by induction on standard filtration length. The base case is true because $M(\lambda)$ has basis $F_{1}^{e_{1}} \ldots F_{k}^{e_{k}} \otimes 1$ by PBW which of course is a $U\left(\mathfrak{n}^{-}\right)$basis. For the induction step by part (a) we can find a submodule $M(\lambda) \hookrightarrow M$

$$
0 \rightarrow M(\lambda) \rightarrow M \rightarrow M / M(\lambda) \rightarrow 0
$$

s.t. $M / M(\lambda)$ has a standard filtration. By induction it follows that $M / M(\lambda)$ is a free $U\left(\mathfrak{n}^{-}\right)$module. But since free $U\left(\mathfrak{n}^{-}\right)$modules are projective, it follows that the above sequence splits as $U\left(\mathfrak{n}^{-}\right)$modules and thus we have

$$
M \stackrel{U\left(\mathfrak{n}^{-}\right) \bmod }{=} M(\lambda) \oplus \frac{M}{M(\lambda)}
$$

But both summands on the RHS are free $U\left(\mathfrak{n}^{-}\right)$modules and thus so is M.
Remark. Part (b) above is actually deeper than you think. Given a standard filtration $\left\{M_{i}\right\}_{i \in I}$ for M and $N \subset M$ a submodule, $\left\{N \cap M_{i}\right\}_{i \in I}$ is not necessarily a standard filtration for N as

$$
\frac{M_{i} \cap N}{M_{i-1} \cap N} \cong \text { submodule of } \frac{M_{i}}{M_{i-1}}=M(\mu)
$$

by the second isomorphism theorem. Thus if all submodules of Verma modules are also Verma modules, then $\left\{N \cap M_{i}\right\}_{i \in I}$ would give us a standard filtration of N. But this isn't true once you are in rank 2 or higher, e.g. $\mathfrak{s l}_{3}$. So arbitrary submodules of modules with a standard filtration need not have a standard filtration.

Theorem 4

Suppose M has a standard filtration, then for all $\lambda \in \mathfrak{h}^{*}$, we have

$$
(M: M(\lambda))=\operatorname{dim} \operatorname{Hom}_{\mathcal{O}}\left(M, M(\lambda)^{\vee}\right)
$$

Proof. You guessed it, we will proceed by induction on the standard filtration length of M. For the base case we clearly have that $(M(\mu): M(\lambda))=\delta_{\lambda \mu}$ while by Theorem 3 we have that dim $\operatorname{Hom}_{\mathcal{O}}\left(M(\mu), M(\lambda)^{\vee}\right)=$ $\delta_{\lambda \mu}$ so they agree. For the induction step, since M has a standard filtration, we have an exact sequence $0 \rightarrow N \rightarrow M \rightarrow M(\mu) \rightarrow 0$ where N also has a standard filtration, for some $\mu \in \mathfrak{h}^{*}$ and thus a LES in cohomology

$$
0 \rightarrow \operatorname{Hom}_{\mathcal{O}}\left(M(\mu), M(\lambda)^{\vee}\right) \rightarrow \operatorname{Hom}_{\mathcal{O}}\left(M, M(\lambda)^{\vee}\right) \rightarrow \operatorname{Hom}_{\mathcal{O}}\left(N, M(\lambda)^{\vee}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{1}\left(M(\mu), M(\lambda)^{\vee}\right)
$$

The last term is zero by Theorem 3 and since N has a standard filtration by definition, we see that by induction

$$
\begin{aligned}
\operatorname{dim} \operatorname{Hom}_{\mathcal{O}}\left(M, M(\lambda)^{\vee}\right) & =\operatorname{dim} \operatorname{Hom}_{\mathcal{O}}\left(N, M(\lambda)^{\vee}\right)+\operatorname{dim} \operatorname{Hom}_{\mathcal{O}}\left(M(\mu), M(\lambda)^{\vee}\right) \\
& =(N: M(\lambda))+\delta_{\lambda \mu}
\end{aligned}
$$

But the last term above is literally $(M: M(\lambda))$ by the exact sequence $0 \rightarrow N \rightarrow M \rightarrow M(\mu) \rightarrow 0$ and this completes the induction step.

4 Refined Composition Factors of $M(\lambda)$

Question 1

For a fixed weight λ, what are conditions on μ s.t. $L(\mu)$ appears a composition factor of $M(\lambda)$?

We can give some necessary conditions to the question above. Namely, suppose we have a composition series of $M(\lambda)$ where $M_{k} / M_{k-1} \cong L(\mu)$. As central characters descend to submodules and quotients, it follows that $\chi_{\lambda}=\chi_{\mu}$ and by Harish-Chandra this means that $\mu=w \star \lambda$. Moreover since $M_{k} \in \mathcal{O}$, we know by the same trick as in Proposition 1 that a lift of the h.w. vector $v_{\mu} \in L(\mu)$ must be in $\left(M_{k}\right)_{\mu} \subseteq M(\lambda)_{\mu}$ and thus μ is a weight of $M(\lambda)$. But this means that $\mu \leq \lambda$.

However it turns out we can give a more refined condition. For each $\lambda \in \mathfrak{h}^{*}$ we will define a subgroup $W_{[\lambda]}$ of the Weyl group as follows.

Definition 4.1. For any $\lambda \in \mathfrak{h}^{*}$, let

$$
W_{[\lambda]}=\{w \in W \mid w \lambda-\lambda \in R\} \quad \Phi_{[\lambda]}=\left\{\beta \in \Phi \mid\left\langle\lambda, \beta^{\vee}\right\rangle \in \mathbb{Z}\right\}
$$

where R is the root lattice.
Remark. Notice $\lambda \in \Lambda$ the weight lattice $\Longleftrightarrow W_{[\lambda]}=W$ and $\Phi_{[\lambda]}=\Phi$. Indeed if $\lambda \in \Lambda$, then

$$
s_{\alpha}(\lambda)-\lambda=\lambda-\left\langle\lambda, \alpha^{\vee}\right\rangle \alpha-\lambda=\left\langle\lambda, \alpha^{\vee}\right\rangle \alpha \in R \quad \forall \text { simple } \alpha
$$

and s_{α} generates W. To show $\Phi_{[\lambda]}=\Phi\left(\right.$ aka $\left\langle\lambda, \alpha^{\vee}\right\rangle \in \mathbb{Z}$ for all simple roots α actually implies $\left\langle\lambda, \beta^{\vee}\right\rangle$ for all roots β) requries a bit more work. Hint: Show $\left(s_{\alpha}(\beta)\right)^{\vee}=s_{\alpha}\left(\beta^{\vee}\right)$ for any two roots $\left.\alpha, \beta\right)$.

Thus, when $\lambda \notin \Lambda$ we see that $W_{[\lambda]}, \Phi_{[\lambda]}$ will be proper subsets of W, Φ.

Remark. Check that $w \rho-\rho \in R$ for any $w \in W$. Hint: w will send some positive roots to negative roots. But ρ is the half sum of all positive roots. In addition, check $\left\langle\rho, \alpha_{i}^{\vee}\right\rangle=1$ for all simple roots α_{i} and thus $\rho \in \Lambda$. Hint: Compute $s_{\alpha_{i}}(\rho)$. As a result if follows that we can rephrase our definitions above as

$$
W_{[\lambda]}=\{w \in W \mid w \star \lambda-\lambda \in R\} \quad \Phi_{[\lambda]}=\left\{\beta \in \Phi \mid\left\langle\lambda+\rho, \beta^{\vee}\right\rangle \in \mathbb{Z}\right\}
$$

Claim: A necessary condition for $L(\mu)$ to appear as a composition factor of $M(\lambda)$ is

$$
\mu \leq \lambda \text { and } \mu=w \star \lambda \text { for some } w \in W_{[\lambda]}
$$

Proof. This is actually just combining our two previous conditions from before ($\mu \leq \lambda$ and $\mu=w \star \lambda$ for $w \in W)$. Note $\mu \leq \lambda$ means $\mu-\lambda \in R^{-} \subset R$ and thus our combined necessary condition is that $w \star \lambda-\lambda \in R$. But this is exactly the statement that $w \in W_{[\lambda]}$ by the remark above.

Theorem 4.2. Let $\lambda \in \mathfrak{h}^{*}$. Then
(a) $\Phi_{[\lambda]}$ is a root system in it's \mathbb{R}-span.
(b) $W_{[\lambda]}$ is the Weyl group of the root system $\Phi_{[\lambda]}$. In particular it is generated by the reflections s_{α} where $\alpha \in \Phi_{[\lambda]}$.
Example 3. Consider $\mathfrak{g}=\mathfrak{s l}_{3}$ and let ω_{1}, ω_{2} be the fundamental weights and let $\lambda=-0.5 \omega_{1}-0.5 \omega_{2}$.
[Draw picture]
Clearly $\lambda \notin \Lambda$. Note it's easier to compute $\Phi_{[\lambda]}$ first and then use the theorem above to compute $W_{[\lambda]}$. When testing for integrality $\left(\left\langle\lambda, \beta^{\vee}\right\rangle \in \mathbb{Z}\right.$?) we can restrict our attention to the positive roots as the answer for the negative roots is the same as for the positive one. A_{2} has 3 positive roots $\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}$. By definition we have that

$$
\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle=-0.5 \notin \mathbb{Z} \quad i=1,2
$$

So we just need to compute

$$
\left\langle-0.5 \omega_{1}-0.5 \omega_{2},\left(\alpha_{1}+\alpha_{2}\right)^{v}\right\rangle
$$

Explicitly we have $\alpha_{1}=\epsilon_{1}-\epsilon_{2}$ and $\alpha_{2}=\epsilon_{2}-\epsilon_{3}$ so $\alpha_{1}+\alpha_{2}=\epsilon_{1}-\epsilon_{3}$, and thus

$$
\left(\alpha_{1}+\alpha_{2}\right)^{\vee}=\frac{2\left(\epsilon_{1}-\epsilon_{3}\right)}{\left\langle\epsilon_{1}-\epsilon_{3}, \epsilon_{1}-\epsilon_{3}\right\rangle}=\frac{2\left(\epsilon_{1}-\epsilon_{3}\right)}{2}=\epsilon_{1}-\epsilon_{3}=\alpha_{1}+\alpha_{2}
$$

And nearly the same computation shows that $\alpha_{i}^{\vee}=\alpha_{i}$ and thus we see that

$$
\left\langle-0.5 \omega_{1}-0.5 \omega_{2},\left(\alpha_{1}+\alpha_{2}\right)^{\vee}\right\rangle=\left\langle-0.5 \omega_{1}-0.5 \omega_{2}, \alpha_{1}^{\vee}+\alpha_{2}^{\vee}\right\rangle=-1 \in \mathbb{Z}
$$

Thus we see that $\Phi_{-0.5 \omega_{1}-0.5 \omega_{2}}=\left\{\alpha_{1}+\alpha_{2},-\left(\alpha_{1}+\alpha_{2}\right)\right\}$ which is isomorphic to A_{1} and thus $W_{-0.5 \omega_{1}-0.5 \omega_{2}}=$ $\mathbb{Z} / 2 \mathbb{Z}$ (in fact is generated by $s_{\alpha_{1}} s_{\alpha_{2}} s_{\alpha_{1}}$ in $\left.W=S_{3}\right)$. By our claim above, this means that $M\left(-0.5 \omega_{1}-\right.$ $0.5 \omega_{2}$) can only have up to two different composition factors instead of up to 6 .

5ρ-Antidominant Weights

Definition 5.1. A weight $\lambda \in \mathfrak{h}^{*}$ is called ρ-antidominant if

$$
\left\langle\lambda+\rho, \beta^{\vee}\right\rangle \notin \mathbb{Z}^{>0} \quad \forall \beta \in \Phi^{+}
$$

Similarly we say that a weight $\lambda \in \mathfrak{h}^{*}$ is $\rho-$ dominant if

$$
\left\langle\lambda+\rho, \beta^{\vee}\right\rangle \notin \mathbb{Z}^{<0} \quad \forall \beta \in \Phi^{+}
$$

Warning. ρ-antidominant is not the same as an antidominant weight in the usual sense nor is it the same as a ρ-shifted antidominant weight (aka $X^{-}-\rho$). [Draw picture] However $X^{-}-\rho \subset$ ρ-antidominant weights as given $\lambda \in X^{-}$we have

$$
\left\langle\lambda-\rho+\rho, \beta^{\vee}\right\rangle=\left\langle\lambda, \beta^{\vee}\right\rangle \leq 0
$$

ρ-dominant is not the same as a dominant weight in the usual sense nor is it the same as a ρ-shifted dominant weight (aka $X^{+}-\rho$). However $X^{+}-\rho \subset \rho$-dominant weights.

Example 4. Let us find all ρ-antidominant weights of $\mathfrak{s l}_{2}$. Here there is only one positive root $\alpha=2$ and thus $\alpha^{\vee}=1$. Note that $\rho=1$ also and thus

$$
\lambda \text { is } \rho-\text { antidominant } \Longleftrightarrow\langle\lambda+1,1\rangle=\lambda+1 \notin \mathbb{Z}^{>0} \Longleftrightarrow \lambda \neq 0,1,2, \ldots
$$

And similarly, we have

$$
\lambda \text { is } \rho-\text { dominant } \Longleftrightarrow \lambda \neq-2,-3, \ldots
$$

Notice that these two sets are not disjoint, $-1=-\rho$ is in both of them as well as all irrational numbers.
Example 5. Check that for $\mathfrak{g}=\mathfrak{s l}_{3}$ the weight $-0.5 \omega_{1}-0.5 \omega_{2}$ is not antidominant.

Proposition 5.2.

$$
\begin{aligned}
\lambda \text { is } \rho-\text { antidominant } & \Longleftrightarrow \lambda \leq w \star \lambda \quad \forall w \in W_{[\lambda]} \\
\lambda \text { is } \rho-\text { dominant } & \Longleftrightarrow \lambda \geq w \star \lambda \quad \forall w \in W_{[\lambda]}
\end{aligned}
$$

Corollary 5

$\exists!\rho$-antidominant weight in the orbit $W_{[\lambda]} \star \lambda$. Likewise $\exists!\rho$-dominant weight in the orbit $W_{[\lambda]} \star \lambda$.

Proof. We just prove it for ρ-antidominant as ρ-dominant is very similar. We first show the existence of a ρ-antidominant weight in the orbit $W_{[\lambda]} \star \lambda$. Let μ be any weight in $W_{[\lambda]} \star \lambda$ that is minimal with respect to standard partial ordering. We claim μ is antidominant. Otherwise $\exists \beta \in \Phi^{+}$s.t. $\left\langle\mu+\rho, \beta^{\vee}\right\rangle \in \mathbb{Z}^{>0}$. By our rephrased definitions we see that this means $\beta \in \Phi_{[\lambda]}$ and thus $s_{\beta} \in W_{[\lambda]}$. But now

$$
s_{\beta} \star \mu-\mu=s_{\beta}(\mu+\rho)-\rho-\mu=\mu+\rho-\left\langle\mu+\rho, \beta^{\vee}\right\rangle \beta-\rho-\mu=-\left\langle\mu+\rho, \beta^{\vee}\right\rangle \beta \in R^{-}
$$

But this exactly means that $s_{\beta} \star \mu<\mu$ contradicting our assumption that μ was minimal in $W_{[\lambda]} \star \lambda$. Uniqueness follows immediately from the Proposition above.

6 Projectives in \mathcal{O}

Proposition 6.1. (a) Suppose $\lambda \in \mathfrak{h}^{*}$ is ρ-dominant. Then $M(\lambda)$ is projective in \mathcal{O}.
(b) If $P \in \mathcal{O}$ is projective and $\operatorname{dim} L<\infty$, then $P \otimes L$ is also projective in \mathcal{O}.

Proof. We want to construct a lift ψ of the following diagram of modules in \mathcal{O}

(a) Let v_{λ} be the h.w. vector of $M(\lambda)$. Then $\varphi\left(v_{\lambda}\right)$ is a h.w. vector of weight λ in N. Again as $M \in \mathcal{O}$ and π is surjective, the same trick as in Proposition 1 shows that $v=\pi^{-1}\left(\varphi\left(v_{\lambda}\right)\right) \in M_{\lambda}$. Consider the submodule $U\left(\mathfrak{n}^{+}\right) v$. It is finite-dimensional as $M \in \mathcal{O}$. However since v is a weight vector, the action of all elements of $U\left(\mathfrak{n}^{+}\right)$raises the weight and so to be f.d, we must have that there exists a h.w. vector say v_{μ} of weight $\mu \geq \lambda$ in $U\left(\mathfrak{n}^{+}\right) v$ and thus in M. This means we have a highest weight module S of weight μ occuring as a submodule of M that contains v. [Draw picture] We therefore have the following exact sequence

$$
\left.0 \rightarrow \operatorname{ker} \pi\right|_{S} \rightarrow S \xrightarrow{\left.\pi\right|_{S}} \operatorname{im} \varphi \rightarrow 0
$$

Therefore any composition factor of $\operatorname{im} \varphi$ appears as a composition factor of S. But $\operatorname{im} \varphi$ being the surjective image of a h.w. module of weight λ is also a h.w. module of weight λ and therefore $L(\lambda)$ is a composition factor of $\operatorname{im} \varphi$ and thus of S. But S is h.w. of weight μ and therefore a quotient of $M(\mu)$ and thus $L(\lambda)$ is a composition factor of $M(\mu)$ as well. But we know from before that a necessary condition is that $\lambda=w \star \mu \Longleftrightarrow \mu=w^{-1} \star \lambda$ for some $w \in W_{[\lambda]}$. But λ is $\rho-$ dominant and by Proposition 5.2 we see that this means $\mu \leq \lambda$ and thus $\mu=\lambda$. But this exactly means $\mathfrak{n}^{+} v=0$ or in other words v is a h.w. vector of weight λ in M and this is exactly what gives us the lift $\psi: M(\lambda) \rightarrow M$ above.
(b) Left to reader, note that since $\operatorname{dim} L<\infty$, we know $P \otimes L$ is in \mathcal{O}. Hint: Use Tensor-Hom and note that the inclusion functor $\iota: \mathcal{O} \hookrightarrow U(\mathfrak{g})-\bmod$ is fully faithful.
Remark. Notice that as a special case of part (a) above we can re derive Proposition 1 part (a), aka $\operatorname{Ext}^{1}(M(\lambda), M)=0$ if M is h.w. of weight μ where $\mu \leq \lambda$. This also means that for general $\lambda, M(\lambda)$ is projective in the Serre subcategory generated by $L(\mu)$ where $\mu \leq \lambda$.
Remark. $M(\lambda)$ is not projective as a $U(\mathfrak{g})$ module, indeed our example above with $M \notin \mathcal{O}$ gives us a SES of $U\left(\mathfrak{s l}_{2}\right)$ modules that is not split with $M(\lambda)$ occuring as the quotient and thus can't be projective.
Remark. As a clarification, note that

$$
\text { Any block of Category } \mathcal{O} \subseteq \mathcal{O}_{\chi_{\lambda}}
$$

as $\operatorname{Ext}_{\mathcal{O}}^{i}(A, B)=0$ for $A \in \mathcal{O}_{\chi_{\lambda}}, B \in \mathcal{O}_{\chi_{\mu}}$ because the central character acts differently on A, B. We now give an example where this is a proper inclusion, aka $\mathcal{O}_{\chi_{\lambda}}$ will have more than one block in it.

Let $\mathfrak{g}=\mathfrak{s l}_{2}$ and let $\lambda \notin \mathbb{Q}$. Check that for $\mathfrak{g}=\mathfrak{s l}_{2}$, that $M(\lambda)$ is simple $\Longleftrightarrow \lambda \notin \mathbb{Z}^{\geq 0}$. Therefore $M(\lambda), M(s \star \lambda)=M(-\lambda-2)$ are both simple and thus $\operatorname{Hom}_{\mathcal{O}}(M(\lambda), M(-\lambda-2))=0$. But from above we know that λ is also ρ-dominant and thus $M(\lambda)$ is projective and therefore

$$
\operatorname{Ext}_{\mathcal{O}}^{i}(M(\lambda), M(-\lambda-2))=0 \quad \forall i \geq 1
$$

So even though $M(\lambda)$ and $M(-\lambda-2)$ are in the same linkage class, they are not in the same block!

[^0]: ${ }^{1} \varphi([x, y])=[\varphi(y), \varphi(x)]=-[\varphi(x), \varphi(y)]$
 ${ }^{2}$ For matrix lie algebras this is just taking the transpose.

[^1]: ${ }^{3}$ In general for $L(n)$ the formula will be $\Phi\left(v_{0}^{*}\right)=n v_{0}$ and $\Phi\left(v_{k}^{*}\right)=\frac{k!}{(n-1) \ldots(n-k+1)} v_{k}$ for $k \geq 1$.

[^2]: ${ }^{4}$ This means that $\nexists \mu \in P(M)$ s.t. $\mu>\lambda$. This will imply that all vectors in M_{λ} are h.w. vectors, but the converse isn't true. For $\mathfrak{g}=\mathfrak{s l}_{2}$, consider $M=M(2) \oplus M(0)$. Then notice M_{0} is two dimensional and contains a h.w. vector. However, since $M_{2} \neq 0,0$ is not a maximal weight. On the other hand 2 is a maximal weight. Also note that λ being a maximal weight is also not the same as M_{λ} consisting of only highest weight vectors, consider $M=L(1) \oplus M(-3)$, we have that M_{-3} only has h.w. vectors but -3 is not maximal.

